THETA CIPHERING ANSWERS

- 0. 54
- 1. $\frac{152\pi}{15}$
- 2. (-1.5, 0)
- 3. $\frac{169}{24}$ or $7\frac{1}{24}$
- 4. 4
- 5. $\begin{bmatrix} 3 & 0 \\ -8 & -7 \end{bmatrix}$
- 6. $72\sqrt{3} 36\pi$
- 7. 1
- 8. -5, -1, 4
- 9. $\frac{1+3\sqrt{5}}{2}$
- 10. $\left(\frac{2}{3}, 1\right) \cup (1, 2) \cup (3, \infty)$
- 11. $\frac{x^2+1}{x^3+2x}$
- 12. 128
- 13. 4
- 14. $\frac{7}{2}$

2018 THETA CIPHERING SOLUTIONS

- 0. 54 $3 \cdot 6 \cdot 3 = 3$ choices for hundreds place, 6 choices for tens place, 3 even digits for ones place.
- 1. $\frac{152\pi}{15}$ Arc length is a fraction (38/60) of the circumference (16 π)
- 2. (-1.5, 0) Slope of perpendicular line will be $-\frac{4}{3}$ and the midpoint of the segment is (-3, 2). Using point-slope form $y - 2 = -\frac{4}{3}(x + 3)$ leads to 4x + 3y = -6 and letting y = 0, gives x = -1.5.
- 3. $\frac{169}{24}$ or $7\frac{1}{24}$ ΔABC is a right triangle by the Pythagorean Theorem. $\Delta AMP \cong \Delta BMP$ by SAS, so AP=PB. Let AP = x. Using the Pythagorean Theorem on ΔAPC , $25 + (12-x)^2 = x^2$ which gives $25 + 144 - 24x + x^2 = x^2$ and so x = 169/24.
- 4. 4 The center (h, k) is (0, -4) and c = 4. Since a vertex is (0, 1), a = 5. $b^2 = a^2 c^2$ resulting in b = 3. So, a + b + h + k = 5 + 3 + 0 + (-4) = 4.
- 5. $\begin{bmatrix} 3 & 0 \\ -8 & -7 \end{bmatrix} \quad AB = \begin{bmatrix} 6 & 0 \\ -12 & -9 \end{bmatrix} \text{ and } B^{-1}A = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 1 & -4 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ -4 & -2 \end{bmatrix}$ Subtract the two results and you get $\begin{bmatrix} 3 & 0 \\ -8 & -7 \end{bmatrix}$.
- 6. $72\sqrt{3} 36\pi$ The radius of the circle is 6 so its area is 36π . Using the 30-60-90 triangle formed by drawing a radius of the circle to the point of tangency to the hexagon (an apothem) and a segment from the center to a vertex of the hexagon, the short leg of the triangle is $2\sqrt{3}$. This makes the side of the hexagon $4\sqrt{3}$. The formula for area = $\frac{1}{2}$ (apothem)(perimeter) so $A = \frac{1}{2} \cdot 6 \cdot 24\sqrt{3} = 72\sqrt{3}$. The area between them is $72\sqrt{3} 36\pi$.

7. 1
$$4(-1) + 2\left(\frac{3}{2}\right) + 6\left(\frac{1}{3}\right) = -4 + 3 + 2 = 1$$

8. -5, -1, 4 Try the test for -1 as a root of f(-x). It works! Synthetically divide by -1 to get the quotient $x^2 + x - 20 = 0$ which factors to (x + 5)(x - 4) = 0 and gives zeros of -5 and 4.

9.
$$\frac{1+3\sqrt{5}}{2}$$
 Let $x = \sqrt{11 + \sqrt{11 + \sqrt{11 + \dots}}}$ Squaring both sides gives $x^2 = 11 + x$ which can be solved by the quadratic formula as $x = \frac{1\pm 3\sqrt{5}}{2}$. Only the positive solution works.

10. $\left(\frac{2}{3},1\right) \cup (1,2) \cup (3,\infty)$ The argument of the logarithm must be positive which gives the resulting domain of $(-3,2) \cup (3,\infty)$. The base of the logarithm, 3x - 2, must also be positive and not equal to 1. This means that x must be greater than $\frac{2}{3}$ but not equal to 1.

11.
$$\frac{x^2+1}{x^3+2x}$$
 $\left(x+\frac{1}{x}\right)^{-1}$ becomes $\frac{x}{x^2+1}$. $\left[x+\frac{x}{x^2+1}\right]^{-1} = \left(\frac{x^3+2x}{x^2+1}\right)^{-1} = \frac{x^2+1}{x^3+2x}$

- 12. 2^7 or 128The prime factorization of 2016 is $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 7$. The smallest prime
factor is 2 and the largest prime factor is 7.
- 13. 4 Solving the first inequality gives $-10 \le 3x 4 \le 10$ resulting in $-2 \le x \le \frac{14}{3}$. Solving the second gives 3x + 2 > 4 or 3x + 2 < -4 leading to the solution of $x > \frac{2}{3}$ or x < -2. The only integers that satisfy both are 1, 2, 3, and 4.
- 14. $\frac{7}{2}$ Let m = 2^{2x}. The equation becomes $3(2^{2x}2^3) (2^{2x})^2 = 128$ and after substituting we get 24(m) m² = 128, or m² 24m + 128 = 0. This factors into (m 16)(m 8) = 0 so m = 8 or m = 16. Solving for x, we get 2^{2x} = 8 which yields x = 3/2 and 2^{2x} = 16 which yields x = 2. The sum is 3/2 + 2 = 7/2.